RFMicron Magnus® S3 Sensor IC

Product Brief Overview

RFMicron's Magnus® S3 single chip IC enables a new class of fully-functional wireless passive sensors consisting of nothing more than the Magnus® S3 chip and an antenna – the same components needed for a conventional read-only RFID tag.

RFMicron is driving a revolutionary change in the RFID market by providing single-chip sensing capability via affordable sensor tags for multiple stimuli such as **temperature**, **moisture**, **pressure**, **and proximity**. This innovation enables substantially lower cost, easily deployed, maintenance-free and battery-free, sensing solutions to business problems for improved product and quality control.

The Magnus® S3 UHF RFID Sensor Tag IC is designed for use in EPCglobal™ Gen 2 (v. 2.0.0) and ISO/IEC 18000-6C compliant tags. It offers an unprecedented degree of user control and feedback, correction of interference and detuning conditions and allows for precise management of tag response.

Magnus® S3 ICs feature RFMicron's patented Chameleon™ technology, Sensor Code, On-Chip RSSI Code and Temperature Code. Chameleon™, the first truly adaptive RFID front end, automatically adjusts the input impedance of the IC to optimally tune the tag to varying frequencies and environmental conditions.

Sensor Code gives the user access to the Chameleon™ self-tuning circuit results as a 9-bit Sensor Code using a standard EPC Gen 2 READ command. The Sensor Code provides a direct measure of the antenna's impedance. Based on the chosen antenna design and the effect of the environment on the impedance, changes in the Sensor Code indicate a change in the environment.

On-Chip RSSI Code is another capability unique to RFMicron. The On-Chip RSSI Code is a 5-bit digital output that can be read by the reader using standard EPC Gen2 commands and can be used as a data resource providing a direct measurement of the signal strength seen by the tag. This feature is useful in development, characterization and system installation to manage the response of large tag deployments.

Magnus® S3 includes an accurate temperature-sensing circuit, which generates the Temperature Code. The Temperature Code is a 12-bit number which can be read using a standard EPC Gen2 READ command. By retrieving the Temperature Code and applying a simple formula determined at calibration time, The Temperature Code can be converted into to a precise temperature measurement.

The Magnus® S3 Sensor Tag IC enables cost-effective solutions which today can only be achieved by conventional sensors costing 10 to 100 times more. RFMicron sensors respond to a variety of environmental stimuli and provide the economies of scale necessary to drive pervasive deployment into markets such as agriculture, automotive, construction, energy, cold chain and healthcare.

Features

- RFMicron's patented Chameleon™ technology enables self-tuning highly consistent-performing passive tags
- 9-bit Sensor Code reports changes in impedance due to environmental effects
- On-Chip RSSI Sensor provides an unprecedented level of information on system performance
- 12-bit Temperature Sensor accuracy +/- 0.3 C from 0 +50C; +/- 1.0 C -40 to +85 C
- Meets EPCglobal™ Gen2 (v. 2.0.0) and ISO/IEC 18000-6C requirements
- Worldwide operation in the RFID UHF band from 860 to 960 MHz
- User-accessible read-only and read/write memory
 - 64-bit factory programmed unique Tag ID (read-only; unalterable)
 - 176-bit user memory
 - 128-bit EPC™ code
 - 32-bit Access and Kill passwords

Applications: Agriculture, Automotive, Construction, Materials, Energy,

Healthcare, Cold Chain

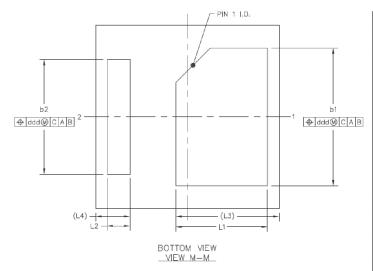
RFMicron Magnus® S3 Sensor IC

Operating Conditions and Electrical Characteristics

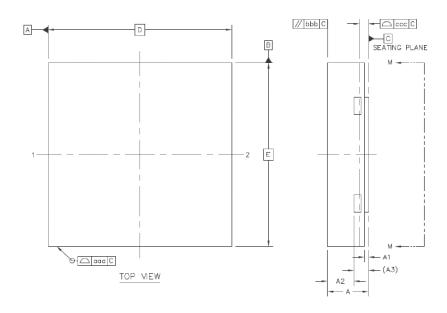
Parameter	Min	Тур	Max	Units	Notes	
Operating Frequency	860		960	MHz		
Operating Temperature	-40		+85	ōC		
Read Sensitivity		-16.6		dBm	1	
Write Sensitivity (EPC compliant)		-9.9		dBm	1	
Data Retention	10			Years	2	
Write and Erase Endurance		10,000		Cycles	2	
Received RF Power			+10	dBm	800-1000 MHz	
ESD Immunity			1750	V	Human Body Model (HBM)	
Storage Temperature	-40		100	ōC		
Assembly Temperature			150	ōC	1 minute duration	

- DSB-ASK modulation with 90% modulation depth and 25 μs Tari used for reader-to-tag communication.
 Miller M=4 encoding with 256 kbps BLF used for tag-to-reader communication. Ambient temperature: 25 °C.
- 2. -40 to +85 ^oC

Pad Description


Pad	Description
RFN	Antenna connection
RFP	Antenna connection
NC	Not connected – pads are for mechanical support and planarity after assembly. Must be electrically floating.

Ordering Information - Available in form


Part #	Description
RFM-3300-BQ	Two lead QFN (Quad Flat No-Lead) Package (1.6mm x 1.6mm x 0.4mm)

Magnus-S3 Quad Flat No-Lead (QFN) Package dimensions and die pad locations

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		А	0.3	0.35	0.4	
STAND OFF		A1	0 0.035		0.05	
MOLD THICKNESS		A2	0.23			
L/F THICKNESS		A3	0.127 REF			
LEAD WIDTH		b1	1.15 1.2		1.25	
LEAD WIDTH		b2	0.95 1		1.05	
BODY SIZE	Х	D	1.6 BSC			
	Y	E	1.6 BSC			
LEAD LENGTH		L1	0.75 0.8		0.85	
LEAD LENGTH		L2	0.15 0.2		0.25	
PACKAGE EDGE TOLERANCE		aaa	0.1			
MOLD FLATNESS		ppp	0.1			
COPLANARITY		ccc	0.08			
LEAD OFFSET		ddd	0.1			
		L3	0.9 REF			
		L4	0.3 REF			

NOTES

1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.

2.0 TOTAL THICKNESS NOT INCLUDE SAW BURR.

*atlasRFIDstore.com 1.888.238.1155 • Inside USA 1.205.383.2244 • Outside USA